
 ISSN (Online): 2349-7084
GLOBAL IMPACT FACTOR 0.238

DIIF 0.876

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING IN RESEARCH TRENDS
VOLUME 2, ISSUE 8, AUGUST 2015, PP 463-469

 IJCERT © 2015 Page | 463
 http://www .ijcert.org

A SURVEY ON IMPLEMANTATION OF
COLUMN ORIENTED NOSQL DATA

STORES

(BIGTABLE & CASSANDRA)
M.Purna Chary

1
, Srinivasa S P Kumar.B

2
, T.RamDas Naik

3

1. Assistant professor, Department of Informatics, Nizam college, Hyderabad, Telangana

2. Assistant professor, Department of CSE, CBIT, Hyderabad, Telangana

3. Assistant professor, Department of Informatics, Nizam college, Hyderabad, Telangana

Abstract - NOSQL is a database provides a mechanism for storage and retrieval of data that is modeled for huge amount of data

which is used in big data and Cloud Computing. NOSQL systems are also called "Not only SQL" to emphasize that they may

support SQL-like query languages. A basic classification of NOSQL is based on data model; they are like column, Document, Key-Value

etc. The objective of this paper is to study and compare the implantation of various column oriented data stores like Bigtable, Cassandra.

Keywords-NoSQL,Bigtable, Cassandra, Transaction, Atomocity, Consistency, CAP

——————————  ——————————

 1. INTRODUCTION

NOSQL technology is an open source concept and
used for applications handling huge volumes of data.
NOSQL systems are also called "Not only SQL" to
emphasize that they may support SQL-like query
languages. These databases do not have fixed schema
and are not based on relational Concept like the
relational database management systems (RDBMS).
NOSQL database management system provides high
speed access to semi-structured and un-structured
data and is very flexible to use. There are several
types of NOSQL database management system like
Key-value stores, Document-oriented and Column
oriented database etc. The Computerworld article
summarizes reasons commonly given to develop and
use NoSQL data stores:
1.1 AVOIDANCE OF UNNEEDED COMPLEXITY

Relational databases provide a variety of features
and strict data consistency. But this rich feature set
and the ACID properties implemented by RDBMSs
might be more than necessary for particular
applications and use cases.

1.2 HIGH THROUGHPUT Some NoSQL databases
provide a significantly higher data throughput than
traditional RDBMSs. For instance, the column-store
Hypertable which pursues Google’s Bigtable
approach allows the local search engine Zvent to
store one billion data cells per day. To give another
example, Google is able to process 20 petabyte a day
stored in Bigtable via its Map Reduce approach

1.3 AVOIDANCE OF EXPENSIVE OBJECT-RELATIONAL

MAPPING Most of the NoSQL databases are designed
to store data structures that are either simple or more
similar to the ones of object-oriented programming
languages compared to relational data structures.
They do not make expensive object-relational
mapping necessary (such as Key/Value-Stores or
Document-Stores).

 2. CHARACTRISTICS OF NOSQL

2.1 CONSISTENCY, AVAILABILITY, PARTITION

TOLERANCE (CAP)

https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Data_retrieval
https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQL

 ISSN (Online): 2349-7084
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING IN RESEARCH TRENDS
VOLUME 2, ISSUE 8, AUGUST 2015, PP 463-469

 IJCERT © 2015
 http://www .ijcert.org

When evaluating NoSQL or other distributed
systems, you’ll inevitably hear about the ―CAP
theorem.‖ In 2000 Eric Brewer proposed the idea that
in a distributed system you can’t continually
maintain perfect consistency, availability, and parti-
tion tolerance simultaneously.CAP is defined by
Wikipedia [7] as:

Consistency: all nodes see the same data at the
same time

Availability: a guarantee that every request
receives a response about whether it was successful
or failed

Partition tolerance: the system continues to
operate despite arbitrary message loss
The theorem states that you cannot simultaneously

have all three; you must make tradeoffs among them.

The CAP theorem is sometimes incorrectly described

as a simple design-time decision—―pick any two

[when designing a distributed system]‖—when in

fact the theorem allows for systems to make tradeoffs

at run-time to accommodate different requirements.

Too often you will hear something like, ―We trade

consistency (C) for AP,‖ which can be true but is

often too broad and exposes a misunderstanding of

the constraints imposed by the CAP theorem. Look

for systems that talk about CAP tradeoffs relative to

operations the product provides rather than relative

to the product as a whole.

Figure 2.1 : CAP Visual Guide

2.2 RELAXING ACID
 ACID properties are the fundamental elements of
transactions in RDBMS: atomicity, consistency,
isolation, and durability. Together, these qualities
define the basics of any transaction. As NoSQL
solutions developed it became clear that in order to
deliver scalability it might be necessary to relax or
redefine some of these qualities, in particular
consistency and durability. Complete consistency in
a distributed environment requires a great deal of
communication involving locks, which force systems
to wait on each other before proceeding to mutate
shared data. Even in cases where multiple systems
are generally not operating on the same piece of data,
there is a great deal of overhead that prevents
systems from scaling.
To address this, A ―BASE‖ acronym is usually used
in the context of NoSQL data stores in contrast to the
―ACID‖ acronym. ―BASE‖ means Basically
Available, Soft state and eventually consistent. Soft
state means that strict constraints are not followed.
Eventual consistency indicates a loosened
consistency model where the updates are propagated
eventually to all the copies i.e. strict one copy
consistency is not followed.
2.3 DATA AND ACCESS MODEL
The relational data model with its tables, views,
rows, and columns has been very successful and can
be used to model most data problems. By using
constraints, triggers, fine-grained access control, and
other features, developers can create systems that
enforce structure and referential integrity and that
secure data. These are all good things, but they come
at a price. First, there is no overlap in the data
representation in SQL databases and in
programming languages; each access requires
translation to and from the database.
NoSQL solutions have taken a different approach. In
fact, NoSQL solutions diverge quite a bit from one
another as well as from the RDBMS norm. There are
three main data representation camps within NoSQL:
document, key/value, and graph. There is still a
fairly diverse set of solutions within each of these
categories. For instance, Riak, Redis, and Cassandra
are all key/value databases, but with Cassandra
you’ll find a slightly more complex concept, based on
Google’s Bigtable, called ―column families,‖ which is
very different from the more SimpleDB-like ―buckets
containing key/value pairs‖ approach of the other
two.

2.4 DISTRIBUTED DATA, DISTRIBUTED PROCESSING

 ISSN (Online): 2349-7084
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING IN RESEARCH TRENDS
VOLUME 2, ISSUE 8, AUGUST 2015, PP 463-469

 IJCERT © 2015
 http://www .ijcert.org

NoSQL solutions are generally designed to manage
large amounts of data, more than you would store on
any single system, and so all generally have some
notion of partitioning (or sharding) data across the
storage found on multiple servers rather than
expecting a centrally connected SAN or networked
file system. The benefits of doing this transparently
are scalability and reliability. The additional reliabil-
ity comes when partitions overlap, keeping
redundant copies of the same data at multiple nodes
in the system. Not all NoSQL systems do this.

 3. COLUMN ORIENTED DATA STORES

Column Family Stores are also known as column
oriented stores, extensible record stores and wide
columnar stores. All stores are inspired by Google's
Bigtable which is a distributed storage system for
managing structured data that is designed to scale to
a very large size. Column stores in nosql are actually
hybrid row/column store unlike pure relational
column databases. Although it shares the concept of
column-by-column storage of columnar databases
and columnar extensions to row-based databases,
column stores do not store data in tables but store the
data in massively distributed architectures. In
column stores, each key is associated with one or
more attributes (columns). A Column store stores its
data in such a manner that it can be aggregated
Rapidly with less I/O activity. It offers high
scalability in data storage. The data which is stored
in the database is based on the sort order of the
column family.[3] Columns can be grouped to
column families, which is especially important for
data organization and partitioning Columns and
rows can be added very flexibly at runtime but
column families have to be predefined oftentimes,
which leads to less flexibility than key value stores
and document stores offer. Examples of column
family data stores include Hbase, Hypertable,
cassandra.

3.1. GOOGLE `S BIGTABLE

The approach of column-oriented storage originated
in analytics and business intelligence where column
stores on shared nothing - parallel architecture is
used for developing high performance applications.
Bigtable is a distributed storage system that can
handle structured data. It has immense scaling

capacity and can handle peta bytes of data across
thousands of commodity servers. It is used in more
than 60 projects at Google which differ in their data
size, infrastructure and latency requirements.
Bigtable was successful in achieving various goals
like applicability, scalability, performance and high
availability.

1. DATA MODEL
The key-value pair model used by different data
stores has many limitations and it cannot be the only
building block provided to the developers. In
Bigtable, the data model is richer than key value and
support sparse and semi structured data. It is a
sparse, sorted, distributed and multi dimensional
map. The values are stored as byte arrays and are
addressed by the triple (row key, column key, time
stamp). Figure 1 shows an example of how Bigtable
stores information emitted by a simple web crawler.
It contains arbitrary number of rows representing the
domains and non fixed number of columns. The first
column contains the page contents and the other
columns store the link texts from the referring
domains. Every value will be associated with a time
stamp and the value is addressed here by the triple
(domain name, column name, time stamp). Row keys
are strings and are maintained in lexicographic
order. The unit of distribution and load balancing in
Bigtable are tablets which is a collection of rows. The
number of columns is not fixed and sets of columns
can be grouped by the common prefix to form
column families. Time stamps are 64 bit integers and
are used to distinguish different versions of a cell
value. The value of the time stamp is assigned by
either the data store or by the client application.

2. IMPLEMENTATION
Every Bigtable instance consists of three major
components:

Multiple Tablet Servers – for handling read and

write requests for tablets and splitting of tablets.

A Client Library – for the applications to interact

with Bigtable instances.

One Master Server – for managing tablets and

tablet servers, distributing workload, processing

changes to schema etc.

Figure 3.1: Google’s Bigtable – Example of Web

Crawler Results (taken from [CDG+06, p. 2])

 ISSN (Online): 2349-7084
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING IN RESEARCH TRENDS
VOLUME 2, ISSUE 8, AUGUST 2015, PP 463-469

 IJCERT © 2015
 http://www .ijcert.org

3.2 APACHE CASSANDRA

Apache Cassandra adopts ideas and concepts of both

Amazon’s Dynamo as well as Google’s Bigtable. It

was originally developed by Facebook and open-

sourced in 2008. Cassandra is a ―distributed storage

system for managing structured data that is designed

to scale to a very large size‖. It does not completely

follow relational data model but provides clients a

simple model which enables dynamic control over

the data layout and format. Other than Facebook,

Twitter, Digg, Rack space etc use Cassandra.

1. DATA MODEL

A Cassandra instance normally has a single table

which can be considered as a distributed multi

dimensional map indexed by a key. A table in

Cassandra has the following dimensions:

Rows – identified by keys, which are strings of
arbitrary length.

Column Families – arbitrary number of column

families can be present per row

Columns – arbitrary number of columns can be

present for every row and they store a number of

values per row. The values can be distinguished

using timestamps as in Bigtable.

Super Columns - have a name and an arbitrary

number of columns can be associated with them. The
number of columns per super-column may differ per
row.

2. IMPLEMENTATION
A server participating in a Cassandra cluster
executes modules providing the following
functionality:

 Partitioning.

 Storage engine.

 Cluster membership and failure detection.
All system control messages follow UDP messaging
while the application related messages relies on TCP.
Request routing is implemented by means of a state
machine on the storage nodes. When a request
arrives, it has the following states:
1. Identify the nodes that have the data
corresponding to the requested key.
2. Route the request to the identified nodes in step 1
and wait for the response.
3. The request fails and returns to the client if the
nodes contacted in step 2 do not reply within the
configured amount of time.
4. Determine the latest response based on timestamp.
5. If any replica is not having the latest data, update

it.

4. COMPARISON OF BIGTABLE AND

CASSANSRA

Bigtable and Cassandra are compared with respect to
various issues in detailed in table 4.1, 4.2, 4.3
respectively as follows. In Table 4.1, issues like
Integrity and in 4.2, Design and Features and in 4.3,
Indexing and Distribution are addressed.

 ISSN (Online): 2349-7084
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING IN RESEARCH TRENDS
VOLUME 2, ISSUE 8, AUGUST 2015, PP 463-469

 IJCERT © 2015
 http://www .ijcert.org

Table 4.1 :
In Table 4.1, Integrity Issues are Compared. Here we
observe that Atomocity, Durability, Integrity
constraints and locking model are not addressed in
Bigtable.

In the Table 4.2 we try to compare the issues like Design
and Features. Here also some of the Issues are not
addressed by Bigtable.

Table 4.2 :Comparison of Bigtable and Cassandra

In Table 4.3 we try to compare some other issues like

Indexing and Distribution. Here composite Key Issues

are not addressed by Bigtable.

5. 5.OBSERVATION

In the above comparison it is observed that some of

the Integrity issues like atomocity, Durability,

Referencial Integrity and Locking model should be

addressed. Apart from this some of the design and

indexing, distribution issues should also be addressed

in Bigtable. In Cassandra, Many security issues

should be Addressed.

Table 4.3: Comparison of Bigtable and Cassandra.

6. CONCLUSION

The approach to store and process data by column

 ISSN (Online): 2349-7084
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING IN RESEARCH TRENDS
VOLUME 2, ISSUE 8, AUGUST 2015, PP 463-469

 IJCERT © 2015
 http://www .ijcert.org

instead of row has its origin in analytics and business
intelligence where column-stores operating in a
shared-nothing massively parallel processing
architecture can be used to build high-performance
applications. In this paper it is examined the
implementation process of column oriented data
stores like Bigtable and Cassandra in NOSQL Data
stores and also compared both the Bigtable and
Cassandra each other with respect to various issues
like Features, Integrity, Indexing ,Distributions,
Design etc. Bigtable is a distributed storage system for
managing structured data that is designed to scale to a
very large size. Cassandra is a distributed database
designed to be highly scalable both in terms of storage
volume and request throughput while not being
subject to any single point of failure.

REFERENCES

[1]. S. Gilbert and N. Lynch, ―Brewer’s conjecture and
the feasibility of consistent, available, and partition-
tolerant web services‖, ACM SIGACT News 33, 2,
pp. 51-59, March 2002.

[2]. Anna Bjorklund, ―NoSQL databases for Software

Project data‖ . January 18, 2011.

 [3] D. J. Abadi. Query execution in column-oriented
database systems. MIT PhD Dissertation, 2008. PhD
Thesis.

[4] D. J. Abadi, S. R. Madden, and M. Ferreira.
Integrating compression and execution in column-
oriented database systems. In SIGMOD, pages 671–
682, 2006.

[5] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R.
Madden. Materialization strategies in a column-
oriented DBMS. In ICDE, pages 466–475, 2007.

[6] ABADI, D. J., MADDEN, S. R., AND FERREIRA,
M. C. Integrating compression and execution in
columnoriented database systems. Proc. of SIGMOD
(2006).

[7] AILAMAKI, A., DEWITT, D. J., HILL, M. D., AND
SKOUNAKIS,M. Weaving relations for cache
performance.In The VLDB Journal (2001), pp. 169.180.

[8] BANGA, G., DRUSCHEL, P., AND MOGUL, J. C.
Resource containers: A new facility for resource
managementin server systems. In Proc.

[9] BARU, C. K., FECTEAU, G., GOYAL, A., HSIAO,
H., JHINGRAN, A., PADMANABHAN, S.,
COPELAND,

[10] Misc. Authors Apache Cassandra 0.6.3
Java Source Code Available from
http://cassandra.apache.org

[11] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D.
A. Wallach, M. Burrows, T. Chandra,A. Fikes, and R.
E. Gruber, Bigtable: A Distributed Storage System
for Structured Data OSDI’06: Seventh Symposium on
Operating System Design and Implementation, 2006,
Seattle,WA, 2006.

[12] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels,
Dynamo: Amazons Highly Available Keyvalue Store
In Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles (2007),
ACM Press New York, NY, USA, pp. 205220

[13] A. Lakshman, P. Malik, Cassandra - A
Decentralized Structured Storage System, Cornell,
2009.

[14] M. Slee, A. Agarwal, M. Kwiatkowski, Thrift:
Scalable Cross-Language Services Implementation
Facebook, Palo Alto, CA, 2007.

[15] R. Tavory, Hector a Java Cassandra
clienthttp://prettyprint.me/2010/02/23/hector-
ajava-cassandra-client February, 2010

[16] R. Tavory, Hector Java Source Code Available
from http://github.com/rantav/hector

[17] Thrift Wiki http://wiki.apache.org/thrift

[18] F. Cristian, Understanding Fault-Tolerant
Distributed Systems University of California.

[19] www.ijecse.org ISSN- 2277-1956
ISSN 2277-1956/V2N1-133-141Bigtable, Dynamo &
Cassandra – A Review Kala Karun A.

http://cassandra.apache.org/
http://github.com/rantav/hector
http://wiki.apache.org/thrift

 ISSN (Online): 2349-7084
INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING IN RESEARCH TRENDS
VOLUME 2, ISSUE 8, AUGUST 2015, PP 463-469

 IJCERT © 2015
 http://www .ijcert.org

